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Abstract
In this paper, we consider the problem of discriminating two given quantum
operations. Based on the Bloch representation of a single qubit, we give
an implicit expression that can be used to evaluate the exact minimum error
probability of discriminating any two single-qubit quantum operations by
unentangled input states. In particular, for the Pauli channels discussed in
Sacchi (2005 Phys. Rev. A 71 062340), we use a more intuitive and visual
method to deal with their discrimination problem. Also, we consider the
condition for perfect discrimination of two quantum operations.

PACS numbers: 03.67.−a, 03.65.Ta

1. Introduction

Discriminating quantum states is a fundamental task in quantum information. It is well known
that nonorthogonal quantum states cannot be perfectly discriminated. However, it is possible
to discriminate them in some relaxed ways. Specifically, there are two typical discrimination
schemes for nonorthogonal states: one is the minimum error discrimination [1] (also see [2]
and references therein), where each measurement outcome selects one of the possible states and
the error probability is minimized, and the other is the optimal unambiguous discrimination
[3–5], where unambiguity is paid by the possibility of getting inconclusive results from
the measurement. Besides, discrimination of quantum states has also been considered in
the minimax approach [6], where there are no a priori probabilities, and one maximizes the
smallest of the probabilities of correct detection. For a recent review on discrimination of
quantum states, we would like to refer the reader to [7].

The problem of discrimination can also be applied to quantum operations. In
[8–10], the authors considered discrimination between unitary transformations (special
quantum operations), and they found that entanglement-assisted input cannot enhance the
distinguishability of a pair of unitary transformations. For the problem of discriminating
general quantum operations, however, there is not very much work, and the first work on
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this problem may be owed to Sacchi [11, 12], where the problem of discriminating two
given general quantum operations was first formulated, and for Pauli channels, this problem
was addressed in detail. Specially, Sacchi [11, 12] showed that unlike unitary transformations
[8–10], entangled input states generally enhance the distinguishability of two general quantum
operations. Also, Pauli channels, as a nontrivial kind of quantum operations, were considered
by D’Ariano et al [13] in the approach of minimax discrimination. Recently, in [2] a general
bound on the minimum error probability for discriminating arbitrary n quantum operations
was obtained. In addition, the unambiguous scheme was also discussed for general quantum
operations by Wang and Ying [14], where a necessary and sufficient condition was given
for a given set of quantum operations to be unambiguously distinguishable. By the way,
recently there is another interesting problem addressed by Chefles et al [15], which considered
unambiguous discrimination among oracle operators. Notably, it is worth mentioning that
some experimental schemes were recently proposed for discrimination of quantum operations
in [16].

Despite some work as mentioned above, having been done on the discrimination of
quantum operations, there are still some fundamental problems left open and further study
is needed. For instance, so far we have not got a computable expression for the minimum
error probability of discriminating two quantum operations, and not even for the simplest
case—discriminating two single-qubit quantum operations. This problem is of course highly
nontrivial in the study of discriminating quantum operations. Notably, a similar problem for
the discrimination of quantum states has been successfully solved by Helstrom [1], where a
general expression for the minimum error probability of discriminating two quantum states ρ1

and ρ2 (with a priori probabilities p1 and p2, respectively) is given as

PE = 1
2 (1 − ‖p1ρ1 − p2ρ2‖1), (1)

where ‖A‖1 = Tr
√

A†A denotes the trace norm of A. (If A is Hermitian, ‖A‖1 also equals
the sum of the absolute value of the eigenvalues of A.) Recently, Qiu [2] derived a general
bound on the minimum error probability for discriminating arbitrary n mixed states.

With these considerations in mind, in this paper we further consider the problem of
discriminating quantum operations in the minimum error scheme. Generally, we should
transform this problem to that of discriminating quantum states. Thus, a natural approach to
discriminate two quantum operations E1 and E2 is to choose a suitable state ρ in the input
Hilbert space H, such that the error probability in the discrimination of the output states E1(ρ)

and E2(ρ) is minimum. We call such a discrimination strategy a non-entanglement strategy.
Besides, we have another more general strategy, called entanglement strategy, where we can
introduce entanglement-assisted input states to increase the distinguishability of the output
states. In this case, the output states to be discriminated will be of the form (E1 ⊗ I)ρ and
(E2 ⊗I)ρ, where the input ρ is generally a bipartite state of H⊗K, and the quantum operations
act just on the first party whereas the identity map I = IK acts on the second.

We denote with PE the minimum error probability when the non-entanglement strategy
is adopted. Then we have

PE(E1, E2) = 1
2 (1 − max

ρ∈H
‖p1E1(ρ) − p2E2(ρ)‖1), (2)

where p1 and p2 are the a priori probabilities for the quantum operations E1 and E2, respectively.
On the other hand, by allowing the use of entanglement-assisted input, we have

P ′
E(E1, E2) = 1

2 (1 − max
ρ∈H⊗K

‖p1(E1 ⊗ I )ρ − p2(E2 ⊗ I )ρ‖1). (3)

Regarding (2) and (3), we mention the following two points. (i) In (3), we can simply let
H = K, because it is known that [19] the maximum of the trace norm in (3) over all finite
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Hilbert space K can be achieved when dim(H) = dim(K). (ii) By the linearity of quantum
operations, the triangle inequality of the trace norm [20] and the spectral decomposition of
quantum states, it is not difficult to see that the maximum in (2) and (3) can be achieved by
pure states. For instance, by letting ρ = ∑

i λi |i〉〈i|, we have

‖p1E1(ρ) − p2E2(ρ)‖1 =
∥∥∥∥∥
∑

i

λi(p1E1(|i〉〈i|) − p2E2(|i〉〈i|))
∥∥∥∥∥

1

�
∑

i

λi‖p1E1(|i〉〈i|) − p2E2(|i〉〈i|)‖1

� max
|i〉

‖p1E1(|i〉〈i|) − p2E2(|i〉〈i|)‖1. (4)

Thus, in the following we only need to consider pure states as input states.
The remainder of this paper is organized as follows. In section 2, firstly we give an implicit

expression (given by (10)) that can be used to evaluate the exact minimum error probability of
discriminating any two single-qubit quantum operations by the non-entanglement strategy, and
then by applying this result to the Pauli channels, we obtain a more intuitive and visual solution
to their discrimination problem than that given in [11, 12]. In section 3, we give a necessary and
sufficient condition for two given quantum operations to be perfectly distinguishable, and as
an application, we further get that two generalized Pauli channels are perfectly distinguishable
if and only if their characteristic vectors are orthogonal. Finally, some conclusions are made
in section 4.

2. Discrimination of single-qubit quantum operations

As mentioned before, a computable expression for the minimum error probability of
distinguishing two quantum operations, even restricted to the single-qubit quantum operations,
has not been obtained. Thus in this section, we try to consider this by starting with the
discrimination of single-qubit operations by the non-entanglement strategy. We think that
this consideration will not lose significance, based on the following two points: (i) single-
qubit quantum operations as the most basic but not trivial quantum operations are of great
importance in quantum computation and quantum information; (ii) in a certain sense, the non-
entanglement strategy may be the optimal one in practice, since this strategy does not need
entangled input which as a valuable physical resource is generally difficult to prepare. Indeed,
by making use of the Bloch representation [21] of single-qubit systems, we can evaluate the
minimum error probability PE (given by (2)) for any two single-qubit quantum operations as
follows.

It is well known that the density operator ρ of a single-qubit system can always be written
in the form

ρ = I + �r · �σ
2

, (5)

where �r = (rx, ry, rz) is a three-dimensional real vector with norm ‖�r‖ � 1 (‖·‖ denotes the
Euclidean norm on Cn) and �r · �σ = rxσx + ryσy + rzσz with {σx, σy, σz} denoting the Pauli
operators [21]. In this way, �r is called the Bloch vector of ρ, and they have a one-to-one
relation. Also, we have that ρ is a pure state if and only if ‖�r‖ = 1.

Based on the Bloch representation, we can visualize the effect of any trace-preserving
single-qubit quantum operation E as the transformation of Bloch vectors

�r → �r = M�r + �c, (6)
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where M is a 3 × 3 real matrix and �c is a three-dimensional real vector, all of which can be
computed from the operator-sum representation of E . Therefore, the quantum operation E on
a single qubit is characterized by the 2-tuple (M, �c). For the details, we refer to [21].

Next, we try to evaluate the minimum error probability of discriminating two single-qubit
quantum operations. Before that, we give some useful results below.

First, we have

1
2 (|a + b| + |a − b|) = max{|a|, |b|}, (7)

where a and b are any real numbers. This equation can be easily verified by discussing the
two cases: |a| � |b| and |a| < |b|.

Secondly, we have a useful lemma in the following.

Lemma 1. Let ρ1 and ρ2 be the states of a single-qubit system with a priori probabilities p1

and p2, respectively. Let �r1 and �r2 be the Bloch vectors of ρ1 and ρ2, respectively. Then we
have

‖p1ρ1 − p2ρ2‖1 = max{|p1 − p2|, ‖p1�r1 − p2�r2‖}. (8)

Proof. First, we note that �r · �σ has eigenvalues ±‖�r‖. Then, by the Bloch representation, we
have

‖p1ρ1 − p2ρ2‖1 = 1
2‖p1(I + �r1 · �σ) − p2(I + �r2 · �σ)‖1

= 1
2‖(p1 − p2)I + (p1�r1 − p2�r2).�σ‖1

= 1
2 (|a − b| + |a + b|), (9)

where we let a = p1 − p2 and b = ‖p1�r1 − p2�r2‖. Therefore, by (7), we have completed the
proof. �

Now, suppose that E1 and E2 are two single-qubit quantum operations, and by the
Bloch representation, E1 and E2 correspond to (M1, �c1) and (M2, �c2), respectively. Then,
the minimum error probability of discriminating E1 and E2 with the non-entanglement strategy
can be evaluated as follows

PE(E1, E2) = 1
2 (1 − max

|ψ〉∈H
‖p1E1(|ψ〉〈ψ |) − p2E2(|ψ〉〈ψ |)‖1)

= 1
2 [1 − max

‖�r‖=1
max{|p1 − p2|, ‖p1(M1�r + �c1) − p2(M2�r + �c2)‖}]

= 1
2 [1 − max{|p1 − p2|, max

‖�r‖=1
‖(p1M1 − p2M2)�r + (p1�c1 − p2�c2)‖}]

= 1
2 [1 − max{|p1 − p2|, max

‖�r‖=1
‖M�r + �c‖}], (10)

where we denote (p1M1 − p2M2) and (p1�c1 − p2�c2) by M and �c, respectively. Note that
the value max‖�r‖=1 ‖M�r + �c‖ can be computed exactly for any fixed M and �c. Therefore,
the minimum error probability PE(E1, E2) given above can be evaluated for any two given
single-qubit quantum operations.

Below, we show explicitly how to compute the value max‖�r‖=1 ‖M�r + �c‖ by computing
its square. Without loss of generality, suppose that

M =
⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ , �c =

⎛
⎝c1

c2

c3

⎞
⎠ , �r =

⎛
⎝x

y

z

⎞
⎠ . (11)

4



J. Phys. A: Math. Theor. 41 (2008) 335302 L Li and D Qiu

Then ‖M�r + �c‖2 = f (x, y, z), where the function f is defined as

f (x, y, z) = (a11x + a12y + a13z + c1)
2 + (a21x + a22y + a23z + c2)

2

+ (a31x + a32y + a33z + c3)
2. (12)

The problem now reduces to finding out the maximal value of f (x, y, z) under the constraint
x2 + y2 + z2 = 1. Clearly, this problem belongs to the class of constrained extremum problems
[22], and we can solve it by the way of Lagrange multipliers. More specifically, we first define
a Lagrange function as

L(x, y, z) = f (x, y, z) + λ(x2 + y2 + z2 − 1), (13)

where λ is a Lagrange multiplier and f (x, y, z) is given by (12); then we have the following
set of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L(x, y, z)

∂x
= 0,

∂L(x, y, z)

∂y
= 0,

∂L(x, y, z)

∂z
= 0,

x2 + y2 + z2 = 1.

(14)

Now, there are four unknowns to be solved and four equations known to us. Thus, in principle,
we can determine the values for the four unknowns x, y, z, λ, and then substituting these
values into (12), we obtain the result. Therefore, PE(E1, E2) can be evaluated for any two
given single-qubit quantum operations.

In the above process, we cannot provide a more concrete expression for PE(E1, E2) than
equation (10), since in general we cannot present the solution of (14) in an explicit and succinct
form. However, that does not matter and what is now important is that by (10) we can evaluate
PE(E1, E2) for any two given single-qubit quantum operations. Of course, more concrete and
succinct expressions can be given for some special cases as we will see soon.

There are some nontrivial special cases in (10) worthy of further explanation.

(i) For a general Bloch representation (M, �c) of single-qubit quantum operation E , there is a
nontrivial case where �c = 0 and then E is called unital (equivalently, E is called unital,
if E(I ) = I ). Indeed, unital operations attract considerable attention in the literature, for
example in [17, 18]. Now for two unital operations E1 and E2 (with �c1 = �c2 = 0) to be
distinguished, the minimum error probability can be evaluated as follows:

PE(E1, E2) = 1
2 [1 − max{|p1 − p2|, max

‖�r‖=1
‖(p1M1 − p2M2)�r‖}]

= 1
2 [1 − max{|p1 − p2|, ‖p1M1 − p2M2‖2}], (15)

where ‖A‖2 denotes the spectral norm [20] of matrix A defined as

‖A‖2 = max{
√

λ : λ is an eigenvalue of A†A}
= max

‖x‖=1
‖Ax‖. (16)

(ii) When |p1 − p2| � max‖�r‖=1 ‖M�r + �c‖, we have

PE(E1, E2) = min{p1, p2}, (17)

which implies that in this case no input state and no measurements are needed, and the
minimum error can always be achieved by just guessing the most likely operation. We
note that similar insight was also gained for discrimination of quantum states by Rudin
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[23], who found that for some set of states, measurement does not aid minimum error
discrimination, and the minimum error probability can always be achieved by guessing
the most likely state.

In [21], some important single-qubit quantum operations were introduced, and they are
bit flip, phase flip, bit–phase flip, depolarizing, phase damping and amplitude damping
channels. One can refer to [21] for their operator-sum representations, and below we
visualize them as the Bloch vector transformations in turn:

BF : (rx, ry, rz) → (rx, (2p − 1)ry, (2p − 1)rz),

PF : (rx, ry, rz) → ((2p − 1)rx, (2p − 1)ry, rz),

BPF : (rx, ry, rz) → ((2p − 1)rx, ry, (2p − 1)rz),

DE : (rx, ry, rz) → ((1 − p)rx, (1 − p)ry, (1 − p)rz),

PD : (rx, ry, rz) → (rx

√
1 − λ, ry

√
1 − λ, rz),

AD : (rx, ry, rz) → (rx

√
1 − λ, ry

√
1 − λ, rz(1 − λ) + λ).

(18)

Therefore, by using (10) (or (15)) and the above transformations, it is easy to get the
minimum error probability of discriminating the above quantum operations.

In fact, bit flip, phase flip, bit–phase flip and depolarizing channels are generalized
by the more general quantum operations—Pauli channels defined as

E(ρ) =
3∑

i=0

qiσiρσi, (19)

where {σ0, σ1, σ2, σ3} = {I, σx, σy, σz},
∑

i qi = 1 and qi � 0 for any i. Discrimination
of Pauli channels was discussed in detail for both entanglement strategy and non-
entanglement strategy by Sacchi [11, 12], and the minimum error probability PE(E1, E2)

for them was derived by an elaborate calculation. However, below we will give a more
intuitive and visual derivation of PE(E1, E2), based on the Bloch representation. At
starting, we give a lemma as follows.

Lemma 2. Let E(ρ) = ∑3
i=0 qiσiρσi be a Pauli channel. Then E corresponds to this Bloch

vector transformation

�r → �r ′ = M�r, (20)

where M = diag{�1,�2,�3} and �i = 2(q0 + qi) − 1.

Proof. First, note that for the Pauli operators, we have

σiσjσi =
{−σj j 
= i

σj j = i,

for i, j = 1, 2, 3. Then we get that

E(ρ) =
3∑

i=0

qiσi

I + �r · �σ
2

σi

= 1

2
[I + (q0 + q1 − q2 − q3)r1σ1 + (q0 − q1 + q2 − q3)r2σ2 + (q0 − q1 − q2 + q3)r3σ3]

= 1

2
[I + (M�r) · �σ ], (21)

where M is defined as above. This completes the proof. �

6
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Now, for the two Pauli channels

E1(ρ) =
3∑

i=0

q
(1)
i σiρσi and E2(ρ) =

3∑
i=0

q
(2)
i σiρσi, (22)

by lemma 2, we know that E1 and E2 have 2-tuple representations (M1, �0) and (M2, �0),
respectively. Then by (15), we have

PE(E1, E2) = 1
2 [1 − max{|p1 − p2|, ‖p1M1 − p2M2‖2}]

= 1
2 [1 − max{|p1 − p2|, C}], (23)

where

C = max{|r0 + r1 − r2 − r3|, |r0 + r2 − r1 − r3|, |r0 + r3 − r1 − r2|}, (24)

and ri = p1q
(1)
i − p2q

(2)
i for i = 0, 1, 2, 3.

In (23), if C � |p1 − p2|, then PE = min{p1, p2}, and thus no exploring input state is
needed as pointed out before. Else, the optimal exploring input state has the Bloch vector
that is the eigenvector corresponding to the eigenvalue of p1M1 − p2M2 having the largest
absolute value.

We mention that discrimination of Pauli channels was also discussed in [11, 12], where
the minimum error probability in the non-entanglement strategy was given as

PE = 1
2 (1 − M), (25)

where

M = max{|r0 + r3| + |r1 + r2|, |r0 + r1| + |r2 + r3|, |r0 + r2| + |r1 + r3|}. (26)

In fact, one can verify that (23) and (25) are equivalent by using (7) and by noting that
p1 − p2 = r0 + r1 + r2 + r3. However, as we can see, our method is based on the Bloch
representation of single-qubit systems, and thus, it is more intuitive and visual than the way
used in [11, 12], where an elaborate calculation was required.

3. Perfect discrimination of quantum operations

In this section, we consider the condition for perfect discrimination of two quantum operations,
and we give a result as follows.

Theorem 1. Given two quantum operations

E1(ρ) =
n1∑

i=1

E
(1)
i ρE

(1)
i

†
and E2(ρ) =

n2∑
j=1

E
(2)
j ρE

(2)
j

†
, (27)

we have

(i) E1 and E2 are perfectly distinguishable with the non-entanglement strategy iff there exists

a state |ψ〉 ∈ H such that 〈ψ |E(1)
i

†
E

(2)
j |ψ〉 = 0 for all i, j .

(ii) E1 and E2 are perfectly distinguishable with the entanglement strategy iff there exists a

state ρ ∈ H such that Tr
(
ρE

(1)
i

†
E

(2)
j

) = 0 for all i, j .

Proof. We first verify part (i). From the discussion in section 1, we know that E1 and E2 are
perfectly distinguishable if and only if there exists a pure state |ψ〉 ∈ H, such that the output
density operators are mutually orthogonal, i.e., they have mutual orthogonal support. The

7
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support of the density operator ρ, denoted by supp(ρ), is defined as the space spanned by the
eigenvectors corresponding to the no-zero eigenvalues of ρ. We denote

ρ1 ≡ E1(|ψ〉〈ψ |) =
n1∑

i=1

E
(1)
i |ψ〉〈ψ |E(1)

i

†
,

ρ2 ≡ E2(|ψ〉〈ψ |) =
n2∑

j=1

E
(2)
j |ψ〉〈ψ |E(2)

j

†
.

(28)

Then it follows that

supp(ρ1) = span
{
E

(1)
i |ψ〉 : i = 1, . . . , n1

}
,

supp(ρ2) = span
{
E

(2)
j |ψ〉 : j = 1, . . . , n2

}
.

(29)

Hence it is readily seen that supp(ρ1) ⊥ supp(ρ2) if and only if E
(1)
i |ψ〉 ⊥ E

(2)
j |ψ〉, i.e.,

〈ψ |E(1)
i

†
E

(2)
j |ψ〉 = 0 for all i, j .

When the entanglement strategy is considered, we can similarly get the condition that

there exists a state |ψ〉 ∈ H ⊗ K such that 〈ψ |E(1)
i

†
E

(2)
j ⊗ I |ψ〉 = 0 for all i and j , which

is equivalent to that given in part (ii), by noting that |ψ〉 has the Schmidt decomposition
|ψ〉 = ∑

k

√
λk|k〉|k〉 and

〈ψ |E(1)
i

†
E

(2)
j ⊗ I |ψ〉 =

∑
k

λk〈k|E(1)
i

†
E

(2)
j |k〉

= Tr
(
ρE

(1)†
i E

(2)
j

)
, (30)

where ρ = ∑
k λk|k〉〈k|. This completes the proof. �

In theorem 1, it is easy to see that if two quantum operations are perfectly distinguishable
by the non-entanglement strategy, then they must be perfectly distinguishable by the
entanglement strategy, and the contrary implication, however, is not true.

Notably, when two unitary operations U1 and U2 are considered, the condition for perfect
discrimination between them reduces to 〈ψ |U †

1U2|ψ〉 = 0 for some input state |ψ〉 ∈ H, i.e.,
the polygon of the eigenvalues of U

†
1U2 encircles the origin, which was discussed in [9, 10].

The condition given in theorem 1, in mathematics, is equivalent to decide if a set of
matrices have a common isotropic vector1, which is generally a difficult problem, and one may
use the theory of numerical range [24] to study that. Thus, it is generally difficult to decide if
two quantum operations are perfectly distinguishable. However, it will become easy in some
special cases as we will show below.

In the following, we consider the condition for two Pauli channels to be perfectly
distinguishable. For that, we discuss a more general case—discriminating the following
quantum operations [11, 12]:

Ei (ρ) =
d2−1∑
n=0

q(i)
n UnρU †

n,
∑

n

q(i)
n = 1 and q(i)

n � 0, (31)

with Tr
(
U

†
mUn

) = dδmn. From the above form, we know that Ei has an operator-sum element

set
{√

q
(i)
n Un

}
. Also, we can see that when the orthogonal set {Un} is fixed, Ei is uniquely

determined by the unit d2-dimensional vector q(i) = (√
q

(i)
0 , . . . ,

√
q

(i)

d2−1

)
, which is called

1 A set of matrices {Ai} are said to have a common isotropic vector if there exists a nozero vector x ∈ Cn such that
x†Aix = 0 for all i [24].
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the characteristic vector of Ei . As we can see, when d = 2, these operations reduce to the
Pauli channels. Thus, we call these quantum operations defined above general Pauli channels
(GPCs). Now by theorem 1, we have the following result for these general Pauli channels.

Corollary 1. Two GPCs E1 and E2 are perfectly distinguishable with the entanglement strategy
iff their characteristic vectors are orthogonal.

Proof. Suppose that E1 and E2 have characteristic vectors q(1) = [√
q

(1)
i

]
and q(2) = [√

q
(2)
i

]
,

respectively. Then from theorem 1, we know that E1 and E2 are perfectly distinguishable with
the entanglement strategy iff the following√

q
(1)
i q

(2)
j 〈ψ |U †

i Uj ⊗ I |ψ〉 = 0 (32)

holds for i, j = 0, . . . , d2 − 1 and some |ψ〉 ∈ H ⊗ K. Let i = j in (32). Then we have√
q

(1)
i q

(2)
i = 0, for i = 0, . . . , d2 − 1, (33)

which is equivalent to q(1) ⊥ q(2). Now we have verified the necessity.
Next, suppose that q(1) ⊥ q(2) holds, i.e., (33) holds. Then for any i, j , by inputting the

maximal entangled state |ψ〉 = 1√
d

∑d−1
k=0 |k〉|k〉, we immediately have

√
q

(1)
i q

(2)
j 〈ψ |U †

i Uj ⊗ I |ψ〉 = 1

d

√
q

(1)
i q

(2)
j

∑
k

〈k|U †
i Uj |k〉

= 1

d

√
q

(1)
i q

(2)
j Tr

(
U

†
i Uj

)

=
√

q
(1)
i q

(2)
j δij

= 0. (34)

Thus, from theorem 1, E1 and E2 are perfectly distinguishable by the maximal entangled state
|ψ〉. This completes the proof. �

Notably, the condition given in the above theorem is also a necessary condition for E1

and E2 to be perfectly distinguishable with the non-entanglement strategy. However, it is not
sufficient. An example of this case is the two channels of this form [12]:

E1(ρ) =
∑
α 
=β

qασαρσα, E2(ρ) = σβρσβ, (35)

with qα 
= 0.

4. Conclusions

In this work, we addressed the problem of discriminating two given quantum operations. For
the single-qubit quantum operations, we obtained an implicit expression that can be used
to evaluate the minimum error probability of discriminating any two single-qubit quantum
operations when the non-entanglement strategy is adopted. For the Pauli channels discussed
in [11, 12], we gave a more intuitive and visual solution to their discrimination problem.
Also, we gave a necessary and sufficient condition for two quantum operations to be perfectly
distinguishable, and as an application, we found that two generalized Pauli channels are
perfectly distinguishable if and only if their characteristic vectors are orthogonal.
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